资源类型

期刊论文 24

会议视频 1

年份

2023 3

2022 2

2020 5

2019 2

2018 1

2016 1

2015 1

2014 5

2013 1

2012 1

2010 2

展开 ︾

关键词

渗透汽化 5

N-聚糖 1

PDMS 1

丁醇 1

中空纤维膜 1

亲/疏水界面修饰 1

亲水相互作用液相色谱法 1

内膜 1

分子筛膜 1

分离 1

化工 1

压力驱动 1

可逆标签 1

含盐有机废水 1

工业应用 1

有机溶剂脱水 1

毛细管凝胶电泳 1

电芬顿 1

糖蛋白 1

展开 ︾

检索范围:

排序: 展示方式:

Combining extractive heterogeneous-azeotropic distillation and hydrophilic pervaporation for enhanced

Eniko Haaz, Botond Szilagyi, Daniel Fozer, Andras Jozsef Toth

《化学科学与工程前沿(英文)》 2020年 第14卷 第5期   页码 913-927 doi: 10.1007/s11705-019-1877-1

摘要: The separation of non-ideal mixtures using distillation can be an extremely complex process and there continues to be a need to further improve these techniques. A new method which combines extractive heterogeneous-azeotropic distillation (EHAD) and hydrophilic pervaporation (HPV) for the separation of non-ideal ternary mixtures is demonstrated. This improved distillation method combines the benefits of heterogeneous-azeotropic and extractive distillations in one column but no added materials are needed as is usually the case with pervaporation. The separation of water-methanol-ethyl acetate and water-methanol-isopropyl acetate mixtures were investigated to demonstrate the accuracy of the combined EHAD/HPV technique. There is not currently an established treatment strategy for the separation of the second mixtures in the literature. These separation processes were rigorously modelled and optimized using a professional flowsheet. The objective functions were total cost and energy consumption and heat integration was also investigated. The verification of the process modelling was carried out using laboratory-scale measurements. Extractive heterogeneous-distillation combined with methanol dehydration was found to be more efficient than conventional distillation for the separation of these highly non-ideal mixtures.

关键词: hydrophilic pervaporation     non-ideal mixture     modelling     extractive heterogeneous-azeotropic distillation     heat integration    

Fabrication of high-performance pervaporation composite membrane for alkaline wastewater reclamation

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 709-719 doi: 10.1007/s11705-021-2078-2

摘要: Pervaporation desalination has a unique advantage to recycle concentrated salt solutions. The merit can be applied to treat alkaline wastewater if the membrane has superior alkali-resistance. In this paper, we used polyethylene microfiltration membrane as the substrate and deposited a glutaraldehyde crosslinked sodium carboxymethylcellulose layer by spray-coating. Pervaporation flux of the composite membrane reached 35€±€2 kg·m–2·h–1 with a sodium chloride rejection of 99.9%€±€0.1% when separating a 3.5 wt-% sodium chloride solution at 70 °C. The desalination performance was stable after soaking the membrane in a 20 wt-% NaOH solution at room temperature for 9 d and in a 10 wt-% NaOH solution at 60 °C for 80 h. Moreover, the membrane was stable in 4 wt-% sulfuric acid and a 500 mg·L−1 sodium hypochlorite solution. In a process of concentrating a NaOH solution from 5 to 10 wt-% at 60 °C, an average water flux of 23 kg·m–2·h–1 with a NaOH rejection over 99.98% was obtained.

关键词: pervaporation     alkaline solution concentration     polyethylene membrane     acid resistance     chlorine tolerance    

Mass transport mechanisms within pervaporation membranes

Yimeng Song, Fusheng Pan, Ying Li, Kaidong Quan, Zhongyi Jiang

《化学科学与工程前沿(英文)》 2019年 第13卷 第3期   页码 458-474 doi: 10.1007/s11705-018-1780-1

摘要: Pervaporation is an energy-efficient membrane technology for separating liquid molecules of similar physical properties, which may compete or combine with distillation separation technology in a number of applications. With the rapid development of new membrane materials, the pervaporation performance was significantly improved. Fundamental understanding of the mass transport mechanisms is crucial for the rational design of membrane materials and efficient intensification of pervaporation process. Based on the interactions between permeate molecules and membranes, this review focuses on two categories of mass transport mechanisms within pervaporation membranes: physical mechanism (solution-diffusion mechanism, molecular sieving mechanism) and chemical mechanism (facilitated transport mechanism). Furthermore, the optimal integration and evolution of different mass transport mechanisms are briefly introduced. Material selection and relevant applications are highlighted under the guidance of mass transport mechanisms. Finally, the current challenges and future perspectives are tentatively identified.

关键词: pervaporation membrane     mass transport mechanisms     physical mechanism     chemical mechanism    

PDMS中空纤维渗透汽化膜处理含盐有机废水

李俊俊,顾瑾,孙余凭,张林,雷乐成

《中国工程科学》 2014年 第16卷 第7期   页码 68-72

摘要:

本文以聚二甲基硅氧烷(PDMS)为膜材料,乙烯基三乙氧基硅烷(VTES)为交联剂,在聚偏氟乙烯(PVDF)中空纤维支撑膜表面通过交联反应制备出PDMS/PVDF中空纤维渗透汽化复合膜。采用扫描电子显微镜和全反射傅里叶红外光谱仪表征复合膜的形貌和结构变化。研究了膜对正丁醇-水、异丙醇-水及丙酮-水三种模拟含盐有机废水的分离效果,并考察了温度对膜性能的影响。结果表明:PDMS/PVDF中空纤维膜对这三种模拟含盐有机废水有较好的分离效果,操作温度为40 ℃ 时,膜的渗透通量分别为275.95 g/(m2·h)、322.16 g/(m2·h)、489.76 g/(m2·h),分离因子为37.82、12.60、33.12。

关键词: 渗透汽化     PDMS     中空纤维膜     含盐有机废水    

Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO

Zhichao Wu, Chang Zhang, Kaiming Peng, Qiaoying Wang, Zhiwei Wang

《环境科学与工程前沿(英文)》 2018年 第12卷 第3期 doi: 10.1007/s11783-018-1042-y

摘要: Membrane technology for oil/water separation has received increasing attention in recent years. In this study, the hydrophilic/underwater superoleophobic membrane with enhanced water permeability and antifouling ability were fabricated by synergistically assembling graphene oxide(GO) nanosheets and titanium dioxide (TiO ) nanotubes for oil/water separation. GO/TiO membrane exhibits hydrophilic and underwater superoleophobic properties with water contact angle of 62° and under water oil contact angle of 162.8°. GO/TiO membrane shows greater water permeability with the water flux up to 531 L/(m ·h·bar), which was more than 5 times that of the pristine GO membrane. Moreover, GO/TiO membrane had excellent oil/water separation efficiency and anti-oil-fouling capability, as oil residual in filtrate after separation was below 5 mg/L and flux recovery ratios were over 80%.The results indicate that the intercalation of TiO nanotubes into adjacent GO nanosheets enlarged the channel structure and modified surface topography of the obtained GO/TiO membranes, which improved the hydrophilicity, permeability and anti-oil-fouling ability of the membranes, enlightening the great prospects of GO/TiO membrane in oil-water treatment.

关键词: Hydrophilic     Superoleophobic     Graphene oxide     Membrane     Titanium dioxide nanotubes     Oil-water separation    

渗透汽化膜技术及其应用

李继定,杨正,金夏阳,房满权,李祥,郑冬菊

《中国工程科学》 2014年 第16卷 第12期   页码 46-51

摘要:

膜分离技术是当代化工领域的高新技术。由于它是解决人类面临的能源、资源、环境等重大问题的新技术,所以近30多年来取得了极为迅速的发展。渗透汽化膜分离技术是一种新型膜分离技术,是典型的节能技术和清洁生产技术。用于恒沸体系分离,与传统的恒沸蒸馏和萃取精馏相比,节能1/3~1/2,运行费节约至少50 %。本文介绍了国内外渗透汽化脱水膜工业应用情况,并重点介绍了渗透汽化汽油脱硫膜、透甲醇膜、透乙醇膜、透碳酸二甲酯膜、芳烃/烷烃分离膜研究进展及其应用的可能性。

关键词: 渗透汽化     膜技术     分离     节能    

Experimental investigations of frost release by hydrophilic surfaces

Zhongliang LIU, Lingyan HUANG, Yujun GOU, Yaomin LIU

《能源前沿(英文)》 2010年 第4卷 第4期   页码 475-487 doi: 10.1007/s11708-010-0114-x

摘要: Frost formation occurs when water vapor in the surrounding air comes into contact with cold surfaces through heat and mass transfer. It is usually an undesirable phenomenon in most refrigeration and cryogenic systems. A few studies have shown that changing the surface energy, such as increasing the surface hydrophilicity or hydrophobicity, has significant effects on frost growth. In this paper, a kind of hydrophilic polymer paint is formulated to counteract frost deposition on cold surfaces. The coated surface can retard frost formation up to three hours under low plate temperatures (-15.3°C) and high air humidity (72%). To test the antifrosting performance of the hydrophilic paint under more practical conditions, it is applied to a fin-and-tube heat exchanger and a domestic refrigerator at a coating thickness of 30 μm. Comparisons of frost deposition, pressure drops, and outlet temperatures are made between uncoated and coated heat exchangers. Under conditions of high air temperature (2.2°C) and relative high air humidity (90%), the paint prolongs the defrosting interval from 80 to 137 min. Experimental observations also show that the coated hydrophilic fins are free of frost deposition during the entire course of the test and that the coating has no significant additional thermal resistance.

关键词: frost formation     hydrophilicity     heat and mass transfer     performance    

Synthesis and characterization of biocompatible polyurethanes for controlled release of hydrophobic and hydrophilic

Juichen YANG,Hong CHEN,Yuan YUAN,Debanjan SARKAR,Jie ZHENG

《化学科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 498-510 doi: 10.1007/s11705-014-1451-9

摘要: Design of biocompatible and biodegradable polymer systems for sustained and controlled release of bioactive agents is critical for numerous biomedical applications. Here, we designed, synthesized, and characterized four polyurethane carrier systems for controlled release of model drugs. These polyurethanes are biocompatible and biodegradable because they consist of biocompatible poly(ethylene glycol) or poly(caprolactone diol) as soft segment, linear aliphatic hexamethylene diisocyanate or symmetrical aliphatic cyclic dicyclohexylmethane-4,4′-diisocyanate as hard segment, and biodegradable urethane linkage. They were characterized with Fourier transform infrared spectroscopy, atomic force microscope, and differential scanning calorimetry, whereas their degradation behaviors were investigated in both phosphate buffered saline and enzymatic solutions. By tuning polyurethane segments, different release profiles of hydrophobic and hydrophilic drugs were obtained in the absence and presence of enzymes. Such difference in release profiles was attributed to a complex interplay among structure, hydrophobicity, and degradability of polyurethanes, the size and hydrophobicity of drugs, and drug-polymer interactions. Different drug-polyurethane combinations modulated the distribution and location of the drugs in polymer matrix, thus inducing different drug release mechanisms. Our results highlight an important role of segmental structure of the polyurethane as an engineering tool to control drug release.

关键词: phase structure     degradation     polyurethanes     controlled release     drug delivery    

渗透汽化脱水分子筛膜的制备与应用研究

顾学红,徐南平

《中国工程科学》 2014年 第16卷 第12期   页码 52-58

摘要:

开发了擦涂-浸渍涂晶法和亚微米晶种诱导制备NaA分子筛膜技术,有效地提高了膜的成品率、缩短了合成时间,获得了适合规模化生产的制膜工艺。通过分子模拟的方法,对有机溶剂和水在分子筛膜中的传质机理进行了探讨。对NaA分子筛膜在体系中的水热、酸碱和盐稳定性进行了系统地研究,提出了相应的预处理工艺,并设计建造出渗透汽化工业应用装置,实现了长时间稳定运行。

关键词: 渗透汽化     分子筛膜     有机溶剂脱水     工业应用    

Tailoring the microstructure and properties of PES/SPSf loose nanofiltration membranes using SPES as a hydrophilic

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1555-1567 doi: 10.1007/s11705-023-2338-4

摘要: Herein, polyethersulfone (PES) and sulfonated polysulfone (SPSf) blend membranes were prepared with addition of sulfonated polyethersulfone (SPES) as a hydrophilic polymer and adipic acid as a porogen via non-solvent induced phase separation method for effective fractionation of dyes based on the influence of steric hindrance and charge effect. Raman spectroscopy and molecular dynamic simulation modeling confirmed that hydrogen bonds between PES, SPSf, SPES, and adipic acid were crucial to membrane formation and spatial arrangement. Further addition of hydrophilic SPES resulted in a membrane with reduced pore size and molecular weight cut-off as well as amplified negative charge and pure water permeance. During separation, the blend membranes exhibited higher rejection rates for nine types of small molecular weight (269.3–800 Da) dyes than for neutral polyethylene glycol molecules (200–1000 Da). This was attributed to the size effect and the synergistic effect between steric hindrance and charge repulsion. Notably, the synergistic impact decreased with dye molecular weight, while greater membrane negative charge enhanced small molecular dye rejection. Ideal operational stability and anti-fouling performance were best observed in M2 (PES/SPSf/SPES, 3.1 wt %). Summarily, this study demonstrates that SPES with –SO3 functional groups can be applied to control the microstructure and separation of membranes.

关键词: adipic acid     loose nanofiltration membrane     dye/salt selective separation     steric hindrance     charge effect    

Hydrophilic modification of poly(aryl sulfone) membrane materials toward highly-efficient environmental

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 614-633 doi: 10.1007/s11705-021-2115-1

摘要: Poly(aryl sulfone) as a typical membrane material has been widely used due to excellent mechanical, chemical and thermal stability. However, the inherent hydrophobicity of poly(aryl sulfone) based membranes bears with the fouling issue during applications, which makes the membrane tending to adsorb contaminants on the surface so as to result in decreased separation performance and lifetime. In this critical review, we give a comprehensive overview on characterizations of hydrophilic membrane and diverse hydrophilic modification approaches of poly(aryl sulfone) membranes, predominantly including bulky, blending and surface modification technology. The discussions on the different modification methods have been provided in-depth. Besides, focusing on modification methods and performance of modified membranes, the related mechanisms for the performance enhancement are discussed too. At last, the perspectives are provided to guide the future directions to develop novel technology to manipulate the hydrophilicity of poly(aryl sulfone) membranes toward diverse practical and multi-functional applications.

关键词: poly(aryl sulfone)     membrane separations     modification     hydrophilicity     water treatment    

Molecular dynamic simulation on the conformation of mouse muscle type nAChR

Shengai SUN, Rilei YU, Yanhui ZHANG, Yanni LI,

《化学科学与工程前沿(英文)》 2010年 第4卷 第3期   页码 348-352 doi: 10.1007/s11705-009-0284-4

摘要: A mouse muscle type nAChR model ((α1)βδγ) was built based on the cryoelectron microscopic structure of intact nAChR and the high resolution crystal structure of nAChR-α1 subunit. The conformation of the pentameric nAChR model was investigated by molecular dynamic simulation. The function of water molecule in the hydrophilic interior was clarified. The reason for Tyr127 showing two alternative conformations was discussed in detail.

关键词: pentameric     hydrophilic     Tyr127     cryoelectron microscopic     conformation    

Factors controlling

Chengkun WANG, Xiaojian ZHANG, Chao CHEN, Jun WANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 151-157 doi: 10.1007/s11783-013-0482-7

摘要: The formation of cancinogenic nitrosamines, esp. -nitrosodimethylamine (NDMA) in water and wastewater treatment plants has drawn much attention in recent years. Dissolved organic matter from the transported Luan River water as water source of Tianjin was fractionated with different XAD resins and a series of ultra-filtration membranes with molecular weight (MW) cut-offs of 5k Da, 3k Da, and 1k Da, respectively. The NDMA yields from the raw water and each fraction were measured to investigate their role in NDMA yield. Results indicated that the hydrophilic fraction had a higher NDMA yield than those of hydrophobic fraction and transphilic fraction. The fraction with MW below 1k Da had a higher NDMA yield than that with larger MW. NDMA formation increased as the dissolved organic carbon (DOC) to dissolved organic nitrogen (DON) ratio decreased, which indicated that DON might serve as the real important precursor for NDMA. The correlation between NDMA yield and specific ultraviolet absorbance at 254 nm (SUVA ) suggested that the latter might not represent the specific precursors for NDMA in the water. Besides the water quality, the influences of pH, disinfectant dosage, and disinfection contact time on the formation of NDMA were also examined. These results will help water treatment plants establish measures to control this harmful disinfection by-product.

关键词: N-nitrosodimethylamine (NDMA)     disinfection by-product     dissolved organic nitrogen (DOC)     hydrophilic     molecular weight (MW)     specific ultraviolet absorbance at 254 nm (SUVA254)    

Removal of organic matter and disinfection by-products precursors in a hybrid process combining ozonation with ceramic membrane ultrafiltration

Xiaojiang FAN,Yi TAO,Dequan WEI,Xihui ZHANG,Ying LEI,Hiroshi NOGUCHI

《环境科学与工程前沿(英文)》 2015年 第9卷 第1期   页码 112-120 doi: 10.1007/s11783-014-0745-y

摘要: The performance of an integrated process including coagulation, ozonation, ceramic ultrafiltration (UF) and biologic activated carbon (BAC) filtration was investigated for the removal of organic matter and disinfection by-products (DBPs) precursors from micro-polluted surface water. A pilot scale plant with the capacity of 120 m per day was set up and operated for the treatment of drinking water. Ceramic membranes were used with the filtration area of 50 m and a pore size of 60 nm. Dissolved organic matter was divided into five fractions including hydrophobic acid (HoA), base (HoB) and neutral (HoN), weakly hydrophobic acid (WHoA) and hydrophilic matter (HiM) by DAX-8 and XAD-4 resins. The experiment results showed that the removal of organic matter was significantly improved with ozonation in advance. In sum, the integrated process removed 73% of dissolved organic carbon (DOC), 87% of UV , 77% of trihalomethane (THMs) precursors, 76% of haloacetic acid (HAAs) precursors, 83%of trichloracetic aldehyde (CH) precursor, 77% of dichloroacetonitrile (DCAN) precursor, 51% of trichloroacetonitrile (TCAN) precursor, 96% of 1,1,1-trichloroacetone (TCP) precursor and 63% of trichloronitromethane (TCNM) precursor. Hydrophobic organic matter was converted into hydrophilic organic matter during ozonation/UF, while the organic matter with molecular weight of 1000–3000 Da was remarkably decreased and converted into lower molecular weight organic matter ranged from 200–500 Da. DOC had a close linear relationship with the formation potential of DBPs.

关键词: ceramic ultrafiltration(UF)     ozonation     organic matter     hydrophilic     hydrophobic     disinfection by-products    

Characterization of the dissolved organic matter in sewage effluent of sequence batch reactor: the impact of carbon source

Jin GUO, Feng SHENG, Jianhua GUO, Xiong YANG, Mintao MA, Yongzhen PENG

《环境科学与工程前沿(英文)》 2012年 第6卷 第2期   页码 280-287 doi: 10.1007/s11783-011-0336-0

摘要: Dissolved organic matter (DOM) transformation in sequence batch reactor (SBR) fed with carbon sources of different biodegradability was investigated. During the biologic degradation process, the low molecular weight (MW) fraction (<1 kDa) gradually decreased, while the refractory compounds with higher aromaticity were aggregated. Size exclusion chromatography (SEC) and fluorescence of excitation emission matrices (EEM) demonstrated that more biopolymers (polysaccharides or proteins) and humic-like substances were presented in the extracellular polymeric substance (EPS) extracted from the SBR fed with sodium acetate or glucose, while the EPS from SBR fed with slowly biodegradable dissolved organic carbon (DOC) substrate-starch had relatively less biopolymers. Comparing the EfOM in sewage effluent of three SBRs, the effluent from SBR fed with starch is more aromatic. Organic carbon with MW>1 kDa as well as the hydrophobic fraction in DOM gradually increased with the carbon sources changing from sodium acetate to glucose and starch. The DOC fractionation and the EEM all demonstrated that EfOM from the effluent of the SBR fed with starch contained more fulvic acid-like substances comparing with the SBR fed with sodium acetate and glucose.

关键词: effluent organic matter (EfOM)     extracellular polymeric substance (EPS)     molecular weight distribution (MWD)     hydrophobic     hydrophilic     excitation emission matrices (EEM)    

标题 作者 时间 类型 操作

Combining extractive heterogeneous-azeotropic distillation and hydrophilic pervaporation for enhanced

Eniko Haaz, Botond Szilagyi, Daniel Fozer, Andras Jozsef Toth

期刊论文

Fabrication of high-performance pervaporation composite membrane for alkaline wastewater reclamation

期刊论文

Mass transport mechanisms within pervaporation membranes

Yimeng Song, Fusheng Pan, Ying Li, Kaidong Quan, Zhongyi Jiang

期刊论文

PDMS中空纤维渗透汽化膜处理含盐有机废水

李俊俊,顾瑾,孙余凭,张林,雷乐成

期刊论文

Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO

Zhichao Wu, Chang Zhang, Kaiming Peng, Qiaoying Wang, Zhiwei Wang

期刊论文

渗透汽化膜技术及其应用

李继定,杨正,金夏阳,房满权,李祥,郑冬菊

期刊论文

Experimental investigations of frost release by hydrophilic surfaces

Zhongliang LIU, Lingyan HUANG, Yujun GOU, Yaomin LIU

期刊论文

Synthesis and characterization of biocompatible polyurethanes for controlled release of hydrophobic and hydrophilic

Juichen YANG,Hong CHEN,Yuan YUAN,Debanjan SARKAR,Jie ZHENG

期刊论文

渗透汽化脱水分子筛膜的制备与应用研究

顾学红,徐南平

期刊论文

Tailoring the microstructure and properties of PES/SPSf loose nanofiltration membranes using SPES as a hydrophilic

期刊论文

Hydrophilic modification of poly(aryl sulfone) membrane materials toward highly-efficient environmental

期刊论文

Molecular dynamic simulation on the conformation of mouse muscle type nAChR

Shengai SUN, Rilei YU, Yanhui ZHANG, Yanni LI,

期刊论文

Factors controlling

Chengkun WANG, Xiaojian ZHANG, Chao CHEN, Jun WANG

期刊论文

Removal of organic matter and disinfection by-products precursors in a hybrid process combining ozonation with ceramic membrane ultrafiltration

Xiaojiang FAN,Yi TAO,Dequan WEI,Xihui ZHANG,Ying LEI,Hiroshi NOGUCHI

期刊论文

Characterization of the dissolved organic matter in sewage effluent of sequence batch reactor: the impact of carbon source

Jin GUO, Feng SHENG, Jianhua GUO, Xiong YANG, Mintao MA, Yongzhen PENG

期刊论文